
Software	
Architecture

Hans-Petter	Halvorsen

O
.	W

id
de

r.	
(2
01

3)
.	g
ee
k&

po
ke
.	A

va
ila
bl
e:
	h
tt
p:
//
ge
ek
-a
nd

-p
ok
e.
co
m



Clients

Server

Database	
Server

Router

Internet

Web
Server

Windows	Server	2008/2012

Windows	7/8

Network	&	
Infrastructure

Ethernet

IIS SQL	Server

LAN

Wi-Fi

OPC
Server



3

O
.	W

id
de

r.	
(2
01

3)
.	g
ee
k&

po
ke
.	A

va
ila
bl
e:
	h
tt
p:
//
ge
ek
-a
nd

-p
ok
e.
co
m

IMHO	– In	My	
Humble	Opinion



API:	Application	Programming	
Interface.	Different	devices	or	software	
modules	can	share	the	same	code.	
Code	once,	use	it	many	times.

Client-
Server

Software	Architecture

Web	
Services

APIs

3-Tier	
Architecture

Web	Services:	A	standard	way	
to	get	data	over	a	
network/Internet	using	
standard	Web	protocols	(HTTP,	
etc.)

3-Tier:	A	way	to	structure	your	code	
into	logical	parts.	Different	devices	or	
software	modules	can	share	the	same	
code.	

Good	Software!

2-Tier

n-Tier



Database
Server

Client

Network/Software	Architecture

Web	
Server

ClientClientClients

Network

OPC	
Server

Internet,	Ethernet,	TCP/IP,	HTTP,	VPN,	
Routers,	Switches,	Computers,	Protocols,	
OSI,	XML,	SOAP,	etc.	

OPC	Tunneller	
Software

Port	8080

Port	1433

RDC/TeamViewer

Virtualization!
VMware HyperV

Hardware	+	Software

Presentation	Layer

Business	Logic	Layer

Data	Access	Layer

Data	
Source

HTTP

Stored	Procedures

RDC/TeamViewer

3	
La
ye
r	A

rc
hi
te
ct
ur
e

3	Layer	ArchitectureClient/Server	Architecture

The	Cloud

SOA	Architecture



Web	
Server

3-tier+WebService	Architecture	- Example

Presentation	
Logic

Business	
Logic

Data	
Source

Web	
Services

Te
am

	F
ou

nd
at
io
n	
Se
rv
er

TFS	Cient

Installed	on	one	or	more	
Windows	Servers	in	your	LAN	
or	in	the	Cloud

Data	
Layer

Stored	
Procedures



Software	Architecture

• Client-Server
• N-tier/3-tier
• SOA	– Service	Oriented	Architecture
–Web	Services

• APIs
• etc.



http://www.youtube.com/watch?v=8Px-GHPxB4I

.NET	vs.	Java



API

Hans-Petter	Halvorsen



API



API
• API	- Aplication	Programming	Interface
• A	specification	of	how	some	software	
components	should	interact	with	each	other.

• A	library	with	functions,	etc.	you	can	use	in	your	
code

• Examples:
–Windows	API
– Java	API	

• But	you	can	also	create	your	own	API	that	you	
use	internally	in	the	team	or	expose	to	others



Software	Design	without	APIs
Pros
• Fast	to	implement	in	small	projects.
• Agile	– can	serve	as	a	starting	point	for	API	design.
• No	need	to	consider	how	code	interfaces	with	other	

software.
• Can	be	appropriate	for	small	“dead	end”	projects.
Cons
• Inappropriate	for	large	projects.
• Code	has	a	limited	(as	opposed	to	general)	functionality.
• Code	is	not	reusable.
• Code	is	hard	to	maintain/modify.
• Prone	to	errors	and	bugs.



Why	a	Good	API	is	hard	to	Design

• Forces	designer	to	anticipate	future	usage	of	
code.

• Requirements	are	incomplete	(may	never	be	
complete).

• Requires	abstraction.
• Requires	modularization.
• Requires	skills	in	programming	languages.
• Requires	code	rewrites	– time	consuming	and	
labor	intensive.



The	Benefits	of	API	Driven	Design
When	an	API	is	used	in	a	project,	it
• Allows	to	focus	on	the	project.
• Saves	development	time.
• Reduces	errors	and	debugging.
• Facilitates	modular	design.
• Provides	a	consistent	development	platform.

è API	driven	design	requires	planning	and	
programming	skills.	API	driven	design	is	costly	initially,	
but	it	pays	in	the	long	run.	So,	obviously,	creating	APIs	
is	good	software	practice	in	most	cases.



Client	-Server

Hans-Petter	Halvorsen



Client-Server

Data
Storage

Client

Server

Request

Response

2-layer	architecture



Client-Server	Example

Database

Client

Web	Server

Request

Response

Web	Browser

Internet	Information	Services	(IIS)



3-layer	
Architecture

Hans-Petter	Halvorsen



3-layer	
Architecture



20

The	database-centric	style.	Typically,	
the	clients		communicate	directly	with	
the	database.

A	three-tier	style,	in	which	clients	
do	not	connect	directly	to	the	
database.

Web	Services,	etc.



Database
Server

Desktop
App

Web
App

Mobile
App

3	Layer	Network/Software	Architecture

Web	Server

API

Server	side

ASP.NET/PHP

IIS/Apache
WS

Business	Logic	Layer

Data	Access	Layer

Presentation	Layer

Client	side HTTPHTTP
HTTPAPI API

Stored	Procedures

Clients	are	not	allowed	to	directly	communicate	with	the	Database	Server!



3-tier	Architecture

Presentation	Layer

Business	Logic	Layer

Data	Access	Layer

Data	
Source



- ASP.NET
- PHP
- JavaScript,	HTML

Example	of	3	Layer	Architecture

Database

Web	
Server

Desktop	
App

Web	
App

Mobile
App

Air	Heater

Weather	
Station

Examples:

SQL	Server	(or	MySQL,	
SQLite,	Oracle)

Internet	
Information	
Services	(IIS)
- or	Apache

4	Tank

2	Tank

- Visual	Studio/C#
- WinForm/WPF
- LabVIEW

Tablet	or	Smartphone

- iOS	(Xcode,	Objective-C)
- Android	(Eclipse,	Java)
- Windows	8	(Visual	Studio/C#)

Server

Client	#1 Client	#2

Client	#3

Process

Clients

Data	Layer(Logic)

Business	Layer	(Logic)

Presentation	Layer

Web	ServicesWeb	Services	or	OPC

3	Layer	
Architechture

I/O	Module

HTTP

Stored	Procedures

Web	Browser

USB-6008
Server-side	Logic



Note!	The	different	layers	can	be	on	the	same	computer	
(Logic	Layers)	or	on	different	Computers	in	a	network	
(Physical	Layers)

Client/Presentation	Layer/Tier

Business/Logic	Layer/Tier

Data	Layer/Tier



Web	Services

Hans-Petter	Halvorsen

S.	Adams.	Dilbert.	Available:	http://dilbert.com



Problem

Clients

Database

How	to	Share	Data	between	Devices	in	a	Network?

Local	
Network/Intern

et

Server(s)
Firewalls

Routers/Switches,	etc.

Security



Problem

ClientsDatabase

How	to	Share	Data	between	Devices	in	a	Network?

Direct	Connection	between	the	Database	and	the	Clients	that	need	the	Data	is	
normally	not	possible,	due	to	security,	compatibility	issues,	etc.	(Firewalls,	Hacker	
Attacks,	etc.)

Direct	Connection	in	a	Local	Network	(behind	the	Firewall)	is	normally	OK	– but	
not	over	the	Internet



Solution:	Web	Service

Web	Service
Internet

HTTP
Clients

Web	Services	uses	standard	web	protocols	like	HTTP,	etc.
HTTP	is	supported	by	all	Web	Browser,	Servers	and	many	Programming	Languages

Database



DatabaseWeb	Server

Network/Intern
et

Server

Client Client Client

Web	Service

Web	Services:
• A	Standard	way	to	get	data	

over	a	network/Internet
• Using	standard	Web	

protocols Normally	you	dont	have	
direct	access	to	a	
Database	over	a	
network,	and	espesially	
not	over	Internet

Data

Data
Data

Data

Data

Web	Services



Web	Services
• A	Web	service	is	a	method	of	communications	
between	two	devices	over	the	World	Wide	Web.

• Web	API
• Standard	defined	by	W3C
• Cross-platform
• Web	Services	can	be	implemented	and	used	in	
most	Programming	Languages	(C#/ASP.NET,	PHP,	
LabVIEW,	Objective-C,	Java,	...)

• Uses	standard	Web	technology	(Web	protocols)
– HTTP,	REST,	SOAP,	XML,	WSDL,	JSON,	...



Why	Web	Service?
• Today	Web	Services	have	been	very	popular
• Easy	Data	sharing	over	Internet
• Platform-independent	Communication
• Makes	it	possible	of	integration	of	different	systems	
and	platforms

• Distributed	Application	Development	

Web	Service
Internet

HTTP
Clients



Web	Services
• Web	Services	1.0:	Uses	SOAP
– “Complex”

• Web	Services	2.0:	Uses	REST
– Less	Complex	than	using	SOAP
– Lightwight	and	Flexible
– The	prefered	model	today

Web	Service
Internet

HTTP
Clients



References

• I.	Sommerville,	Software	Engineering:	Pearson,	2010.	
• E.	J.	Braude	and	M.	E.Bernstein,	Software	Engineering.	Modern	Approaches,	

2	ed.:	Wiley,	2011.	
• Wikipedia.	(2013).	SOA.	Available:	http://en.wikipedia.org/wiki/Service-

oriented_architecture
• NTNU.	(2013).	TDT4140	Systemutvikling.	Available:	

http://www.ntnu.no/studier/emner/TDT4140
• UiO.	(2013).	INF1050	- Systemutvikling.	Available:	

http://www.uio.no/studier/emner/matnat/ifi/INF1050/
• O.	Widder.	(2013).	geek&poke.	Available:	http://geek-and-poke.com
• B.	Lund.	(2013).	Lunch.	Available:	http://www.lunchstriper.no,	

http://www.dagbladet.no/tegneserie/lunch/
• S.	Adams.	Dilbert.	Available:	http://dilbert.com



Hans-Petter	Halvorsen,	M.Sc.

University	College	of	Southeast	Norway
www.usn.no

E-mail:	hans.p.halvorsen@hit.no
Blog:	http://home.hit.no/~hansha/


